Combined Heat and Power (CHP) Basics for IAC Students

February 11, 2021

Patti Garland, CHP TAP Coordinator

Cliff Haefke, Director, Midwest CHP TAP & Assistant Director, University of Illinois Chicago IAC

Beka Kosanovic, Assistant Director, New York–New Jersey CHP TAP & Director, University of Massachusetts IAC

CHP Technical Assistance Partnerships

Agenda

- What is the US DOE CHP TAP Program
- CHP Concepts, Available Resources, & Project Snapshots
- CHP TAP Screening Analysis
- CHP Project Assessment Case Studies

Introduction

Cliff Haefke

Director, US DOE Central CHP TAP US DOE Midwest CHP TAP Assistant Director, US DOE IAC – UIC

Patti Garland

DOE CHP TAP Coordinator [contractor] Office of Energy Efficiency and Renewable Energy U.S. Department of Energy

Dr. Beka Kosanovic

Director, US DOE IAC – Umass

Assistant Director, US DOE New York-New Jersey CHP TAP

AMO Technical Partnership Sub-Programs Collaborate

Direct engagement with Industry

Driving the continuous improvement and wide-scale adoption of proven technologies (e.g., CHP) to reduce energy use in the manufacturing sector

✓ Validate the performance and energy impacts of established advanced manufacturing technologies and identify opportunities for further development or commercialization by the private sector.

 ✓ Foster feedback from stakeholders on critical technology challenges that might be addressed by follow-on, early-stage applied R&D.

CHP Technical Assistance Partnerships

Core Programs

- 1. Combined Heat and Power
- 2. Industrial Assessment Centers
- 3. Better Plants
- 4. ISO 50001/SEP

What is the US DOE CHP TAP Program?

U.S. DOE CHP Technical Assistance Partnerships (CHP TAPs)

• End User Engagement

Partner with strategic End Users to advance technical solutions using CHP as a cost effective and resilient way to ensure American competitiveness, utilize local fuels and enhance energy security. CHP TAPs offer fact-based, non-biased engineering support to manufacturing, commercial, institutional and federal facilities and campuses.

• Stakeholder Engagement

Engage with strategic Stakeholders, including regulators, utilities, and policy makers, to identify and reduce the barriers to using CHP to advance regional efficiency, promote energy independence and enhance the nation's resilient grid. CHP TAPs provide fact-based, non-biased education to advance sound CHP programs and policies.

• Technical Services

As leading experts in CHP (as well as microgrids, heat to power, and district energy) the CHP TAPs work with sites to screen for CHP opportunities as well as provide advanced services to maximize the economic impact and reduce the risk of CHP from initial CHP screening to installation.

National Manufacturing Day 2019 at the University of Illinois at Chicago

DOE CHP Technical Assistance Partnerships (CHP TAPs)

P Technical Assistance Partnerships

CHP TAP Activities FY19 and FY20 (through November 2020):

Completed 633 Technical Assistance Activities with an estimated capacity of 991 MW Identified 204 end-user partners and completed 303 engagements Identified 140 stakeholder partners and completed 208 engagements

Some partner engagements physically occur in a single state and engage representatives from multiple states (e.g. at regional conferences, workshops, etc.). These engagements are reflected once in the map in the state where they occurred, even if they impacted other states. For example, multiple engagements occurred with representatives from Wyoming and South Dakota, although these are not reflected in the map because the engagements occurred outside their states.

CHP Concepts, Available Resources, Project Snapshots

CHP: A Key Part of Our Energy Future

- Form of Distributed Generation (DG)
- An integrated system
- Located at or near a building / facility
- Provides at least a portion of the electrical load and
- Uses thermal energy for:
 - Space Heating / Cooling
 - Process Heating / Cooling
 - \circ Dehumidification

Source: www.energy.gov/chp

CHP is used Nationwide

Source: DOE CHP Installation Database (U.S. installations as of Dec. 31, 2019)

What Are the Benefits of CHP?

- CHP is more efficient than separate generation of electricity and heating/cooling
- Higher efficiency translates to lower operating costs (but requires capital investment)
- Higher efficiency **reduces emissions** of pollutants
- CHP can also increase energy reliability and enhance power quality
- On-site electric generation can reduce grid congestion and avoid distribution costs.

Reciprocating Engine or Turbine with Heat Recovery

- Gas or liquid fuel is combusted in a prime mover, such as a reciprocating engine, microturbine, or gas turbine
- The prime mover is connected to a generator that produces electricity
- Energy normally lost in the prime mover's hot exhaust and cooling system is recovered to provide useful thermal energy for the site

Boiler / Steam Turbine

- Fuel is burned in a boiler to produce high pressure steam that is sent to a backpressure or extraction steam turbine
- The steam turbine is connected to an electric generator that produces electricity
- Low pressure steam exits the turbine and provides useful thermal energy for the site

Heat Recovery

Heat Exchangers

- Recover exhaust gas from prime mover
- Transfers exhaust gas into useful heat (steam, hot water) for downstream applications
- Heat Recovery Steam Generators (HRSG) the most common

Heat-Driven Chillers

- Absorption Chiller
 - Use heat to chill water
 - Chemical process (not mechanical)
- Steam Turbine Centrifugal Chiller

Image Source: University of Calgary

Image Source: DOE - EERE

Common CHP Technologies and Capacity Ranges

Five Common Prime Movers

- Reciprocating engines
- Gas turbines
- Microturbines
- Fuel cells
- Steam turbines

Packaged CHP System Have Standard Repeatable Designs

- 100% pre-wired
- 100% pre-piped with customer ready connection
- Properly ventilated
- Sound insulated
- Fire rated
- With a gas detection and smoke alarm
- Fluid containment system
- Auxiliaries sized appropriately and shipped complete with connecting piping and wiring
- Packagers have bulk purchasing power that local contractors do not have

US DOE Packaged CHP Systems eCatalog

FOCUS YOU

PRIMARY SI

Selected: So

SUPPLIER PI O Packagers o Recognized O Solution Pro installing, co

and maintain systems O Solution Pro Assurance F

O Solution Pro

Prioritize pripackaged s
 POWER OUT

Help Me Cho kW

*Default inclu

120% of unit of 70% of uni

PRIME MOVE
 Reciprocati
 Combustion
 Microturbin

THERMAL OF
Hot Water O
Hot Water a

Steam Only
 Steam and

 Steam, Hot Water (4)

FUEL TYPE

Natural Gas
 Digester Gas

GRID CONNE Grid Paralle Grid Island,

OUTDOOR IN Required (1)

Energy Serv CUSTOMER PARTNER

- A national web-based searchable catalog (eCatalog) of DOE-recognized packaged CHP systems and suppliers with the goal to reduce risks for end-users and vendors through partnerships
- Pre-engineered and tested packaged CHP systems that meet DOE performance requirements
- Launched Nov 8, 2019
- 32 recognized Packagers
- 21 recognized Solution Providers
- **247 Package Offerings:** 164 reciprocating engine, 82 microturbine, 1 gas turbine, 226 natural gas, 20 digester gas, 1 propane, 57 grid parallel only, 178 grid islandable/auto transfer, 24 kW to 7.5 MW, Multiple suppliers and packages in every zip code
- 9 Customer Engagement Partners

US DOE and US EPA CHP Resources

Visit DOE's CHP Resources: <u>https://www.energy.gov/eere/amo/combined-heat-and-power-basics</u>

DOE CHP Installation Database

DOE Project Profile Database

EPA dCHPP (CHP Policies and Incentives Database)

DOE Policy/ Program Profiles

CHP Technical Assistance Partnerships

DOE CHP Technologies Fact Sheet Series

DG for Resilience Planning Guide

State of CHP Pages

CHP Issue Brief Series

US DOE "CHP Technology Fact Sheets"

- 1. Overview of CHP Technologies
- 2. Fuel Cells
- 3. Gas Turbines
- 4. Microturbines
- 5. Reciprocating Engines
- 6. Steam Turbines
- 7. Absorption Chillers
- 8. Microgrids
- 9. District Energy

Location of Fact Sheets: <u>https://www.energy.gov/eere/amo/combined-heat-and-power-basics</u>

Reciprocating Engi		
Reciprocating internal combustion en		
nology used for power generation, tra		
other purposes. Worldwide productio combustion engines exceeds 200 mill		
CHP installations, reciprocating engin		
range from 10 kW to 10 MW. Multiple		
grated to deliver capacities exceeding		
Several manufacturers offer reciproca		
ed power generation, and these engin		
fueled with natural gas, are well suited		
Table 1 for summary of attributes).	FIOT OTHE DEFINED	
· · · · · · · · · · · · · · · · · · ·		
Applications		The second se
Reciprocating engines are well suited t		
generation applications and are used th		
commercial, and institutional facilities CHP. There are nearly 2,400 reciproca		
lations in the U.S., representing 54% o		Diato counters of Caternillar
of installed CHP systems. ² These recip		
a combined capacity of nearly		
2.4 gigawatts (GW), with spark	Table 1.	Summary of Reciprocating Engine Attributes
ignited engines fueled by natural		Reciprocating engines for CHP are available in sizes from 10 kW to 10 MW.
gas and other gas fuels account- ing for 83% of this capacity.	Size range	Multiple engines can be combined to deliver higher capacities. The majority of
Thermal loads most amenable to		CHP installations with reciprocating engine are below 5 MW. ²
engine-driven CHP systems in	Thermal output	Thermal energy can be recovered from the engine exhaust, cooling
commercial/institutional buildings	mermaroutput	water, and lubricating oil, and then used to produce hot water, low
are space heating and hot water requirements. The primary appli-		pressure steam, or chilled water (with an absorption chiller).
cations for CHP in the commer-		
cial/institutional and residential	Part-load operation	Reciprocating engines perform well at part-load and are well suited for both baseload and load following applications.
sectors are those with relatively	operation	both baseload and load following applications.
high and coincident electric and hot water demand. Common ap-	Fuel	Reciprocating engines can be operated with a wide range of gas and
		liquid fuels. For CHP, natural gas is the most common fuel.
		Reciprocating engines are a mature technology with high reliability.
plications for reciprocating engine CHP systems include universities,	Reliability	Reciprocating engines are a mature technology with high reliability.
plications for reciprocating engine CHP systems include universities, hospitals, water treatment facili-	Reliability	
plications for reciprocating engine CHP systems include universities, hospitals, water treatment facili- ties, industrial facilities, commer-		Reciprocating engines have relatively low installed costs and are widely
plications for reciprocating engine CHP systems include universities, hospitals, water treatment facili-		

20

Replacing Pressure-Reducing Valve with Steam Turbine

East Kansas Agri-Energy (EKAE) Garnet, KS

Application/Industry: Ethanol plant Capacity: 1.6 MW Prime Mover: Steam turbine Fuel Type: Natural gas Thermal Use: Process heat Installation Year: 2005 Energy Savings: \$180,000/year

Testimonial: "I have to make the steam for the production process. This is a classic cogeneration application that's been around forever. It's nearly a perfect conversion of heat to work when you have an application where you use lowpressure exhaust steam."

- Ken Ulrich, Design Engineer

Steam Turbine Generator

Source: <u>https://chptap.lbl.gov/profile/63/EastKansasAgriEnergy-Project_Profile.pdf</u> Technical Assistance Partnerships Slide prepared 6/2017

Waste Heat-to-Power Turbine Addition

Adkins Energy LLC Lena, IL

Application/Industry: Ethanol plant Capacity: 1.8 MW Steam Flow: 37,000 lbs/hr Prime Mover: Steam turbine Fuel Type: Waste heat Thermal Use: Electricity Installation Year: 2019 Est. Annual Savings: \$674,000 based on \$0.07/kWh

Testimonial:

"The CHP installations provide us economic stability and reliability for our electricity supply regardless of unforeseen electricity grid outages."

- Jason Townsend, Plant Manager, Adkins Energy LLC

Source: <u>https://chptap.lbl.gov/profile/2/AdkinsEnergyWHP-Project_Profile.pdf</u>

Reduced Energy Costs & Lower Carbon Footprint

Bell's Brewery Galesburg, MI

Application/Industry: Brewery Capacity: 150 kW Prime Mover: Reciprocating engine Fuel Type: Biogas Thermal Use: Anaerobic digester and water heating Installation Year: 2014

Highlights:

Due to its efficient and green use of the wastewater byproducts, the CHP plant at Bell's Brewery won an Engineering Honorable Conceptor Award from the American Council of Engineering Companies of Michigan in 2016.

Testimonial:

"We have taken something that was being treated as a waste and converted it to savings and renewable energy. We've reduced the Brewer's water treatment costs while generating electricity and heat, two inputs to our process that we were already purchasing prior to the project"-Walker Modic, Sustainability Manager

Inspired Brewing®

Source: https://chptap.lbl.gov/profile/299/BellsBrewery-Project_Profile.pdf

3rd Party Build, Own, and Operate

Solvay Specialty Polymers / DTE Marietta Marietta, Ohio

Application/Industry: Chemicals Capacity: 8 MW Prime Mover: Combustion turbine Fuel Type: Natural gas Thermal Use: Process heating Installation Year: 2015

Testimonial: "Solvay Specialty Polymers and DTE Energy Services worked together closely to develop a customized energy supply facility to meet our plant's specific needs. The DTE Marietta cogeneration project has provided a reliable, efficient, economic energy supply solution to the Solvay complex to ensure that our plant can meet its production goals."

- Al Wanosky, Solvay Site Utilities Manager

Source: https://chptap.lbl.gov/profile/210/Solvay Specialty Plastics-Project Profile.pdf

Slide prepared 6/2017

Municipal Utility / Ethanol Plant Partnership

POET Biorefining & City of Macon, Missouri Macon, MO

Application/Industry: Ethanol Plant, Utility Capacity: 10 MW Prime Mover: Gas turbine Fuel Type: Natural gas Thermal Use: Thermal requirements of the ethanol production process Installation Year: 2003 Energy Savings: 15-25% reduction in natural gas steam production costs

Highlights: The CHP system at POET provides nearly 60% of the facility's steam requirements, electric power for the plant, and grid electricity sales for Macon Municipal Utilities. The plant has experienced numerous grid outages since CHP operations began in 2003 and has successfully maintained operation of the plant during these outages by switching the load totally to the CHP system.

Source: <u>https://chptap.lbl.gov/profile/184/POETandCityofMacol-</u> <u>Project_Profile.pdf</u>

Targeting Net-Zero

Downers Grove Sanitary District Downers Grove, IL

Application/Industry: Wastewater Treatment Capacity: 655 kW Prime Mover: Reciprocating engines (2) Fuel Type: Biomass Thermal Use: Heat for the digestion process Installation Year: 2014, 2017

Highlights: Waste grease from nearby restaurants helps power the CHP system, which offsets about 50% of the wastewater treatment plant's energy consumption. The expanded CHP system, the DGSD is reaching net-zero.

CHP TAP Screening Analysis and Case Studies

Steps to Developing a CHP Project and the Technical Assistance Available through the CHP TAPs

Ideal Conditions for a CHP System

- 1) Necessary conditions
 - ✓High Electric Usage
 - ✓Coincidental thermal load
 - ✓ High hours of operation
- 2) Equipment replacement
 - ✓ Older Back-up Generator
 - ✓ Replacing Chillers
 - ✓ Replacing Boilers

3) Customer motivation

- ✓ Utility cost
- ✓ Power reliability
- ✓ Waste heat or biofuel untapped resource
- ✓ Sustainability & environmental
- ✓Plans to expand facility
- 4) Other factors
 - ✓ EE measures already implemented
 - ✓ Centralized HVAC

CHP Screening Analysis Considerations

What should be included in a CHP screening analysis?

<u>Inputs</u>

- Installed Costs (\$/kW installed)
- O&M Costs (\$/kWh)
- Elec Generating Capacity (kW)
- Therm Generating Capacity (Btu/hr)
- Fuel Consumption (Btu/hr)

<u>Outputs</u>

- Electric Savings (kWh and \$/yr)*
- Thermal Savings (Btu/yr and \$/yr)
- Fuel Costs (Btu/yr and \$/yr)
- Total Annual Savings (\$/yr)
- Simple Payback (years)**
- Overall CHP Efficiency (%)

* Account for standby charges

** Account for incentives, grants, tax credits, etc.

Ideal Conditions for a CHP System

- 1) Necessary conditions
 - ✓High Electric Usage
 - ✓Coincidental thermal load
 - ✓ High hours of operation

2) Equipment replacement

✓ Replacing Boilers

3) Customer motivation

- ✓ Utility cost
- ✓ Power reliability
- \checkmark Plans to expand facility

4) Other factors

 \checkmark EE measures already implemented

Ideal Conditions for a CHP System

Necessary conditions

RESOURCE	UNITS CONSUMED	MILLION BTU'S CONSUMED	COST
Electricity	46,682,650 kWh	159,328	\$6,189,578
Electricity Demand	76,053 kW		\$346,041
Other fees & discounts			\$848
#2 Fuel Oil	526,968 gallons	73,065	\$1,156,108
#6 Fuel Oil	2,251,224 gallons	342,186	\$2,981,695
TOTAL	-	574,579	\$10,674,270

Customer motivation

Electricity Usage	\$0.1328/kWh
Electric demand	\$4.55/ kW
#6 Heating oil	\$8.71/MMBtu
#2 Heating oil	\$15.82/MMBtu

Other factors 8,700 operating hours

Load Considerations - Winter

Average Load: 71.18 kW Average Thermal: 0.41 MMBtu

Actual numbers:

- -24 hr operation (same)
- -85% heat recovered
- -84% electricity generated
- -323 kWh not delivered

Load Considerations

Minimum allowed load: 50%; 8,120 operating hours

CHP Technical Assistance Partnerships

System Size Considerations

3.5 MW; min load: 50%; 8,240 hrs; 7.9 years

5.7 MW; min load: 50%; 8,120 hrs; payback 9.5 years

CHP Technical Assistance Partnerships

Project Profile:

Steam Turbine Application

Seaman Paper Otter River, Massachusetts

Application/Industry: Specialty Paper Capacity: 283 kW Steam Flow: 40,000 lbs/hr Prime Mover: Steam turbine Fuel Type: Biomass Thermal Use: Electricity Installation Year: 2009 SEAMAN PAPER COMPANY OF MASSACHUSETTS

• Biomass takes up a great deal of space. Make sure there is adequate space for fuel delivery and storage.

• Biomass is not energy dense. It can require multiple trailer truck deliveries per day. The facility needs to be able to handle this. The effect of the increased truck traffic on the neighbors should also be considered.

• The plant's electrical output depends on the amount steam the plant is calling for. The system has averaged about a 70% capacity factor over the most recent year of operation.

Source: https://chptap.lbl.gov/profile/198/Seamanpaper1.pdf

Erving Paper Erving, Massachusetts

Application/Industry: Pulp and Paper Capacity: 6.2 MW (5.67 MW GT & 0.525 MW ST) Steam Flow: 32,500 lbs/hr Prime Mover: Gas & Steam turbine Fuel Type: CNG Thermal Use: Steam Installation Year: 2015

Testimonial: *"We wouldn't be operating today if not for the CHP system." Michael Peterson, Maintenance/Electrical Manager, Erving Industries*

Source: https://chptap.lbl.gov/profile/71/ErvingIndustries-Project_Profile.pdf

Summary

- CHP can provide lower operating costs, reduce emissions, increase energy reliability, enhance power quality, and reduce grid congestion and avoid distribution costs
- CHP is a substantial energy efficiency option for IAC clients with coincident high electric and thermal load throughout the year, high hours of operation, and need for uninterruptible energy
- CHP resources are available at <u>www.energy.gov/chp</u>

Thank You! Any Questions?

Cliff Haefke

Director, US DOE Central CHP TAP US DOE Midwest CHP TAP Assistant Director,

US DOE IAC – UIC

chaefk1@uic.edu

Patti Garland

DOE CHP TAP Coordinator [contractor] Office of Energy Efficiency and Renewable Energy U.S. Department of Energy

Patricia.Garland@ee.doe.gov

Dr. Beka Kosanovic

Director, US DOE IAC – Umass

Assistant Director, US DOE New York-New Jersey CHP TAP

kosanovic@umass.edu

For more information visit <u>www.energy.gov/chp</u>

Appendix (additional information)

CHP in the U.S. Represents a Variety of Fuels, Technologies, Sizes, and Applications

Residential

Utility Scale

Total CHP Installations by Application

By Site -4,608 Sites

Other Other/Unknown Other/Unknown Agriculture Comm./Inst. 0.2 GW 232 Sites 265 Sites Chemicals 6.8 GW 253 Sites **District Energy** 3.3 GW Chemicals Utilities 23.4 GW 3.4 GW Other Other Industrial Other Industrial Comm./Inst. 961 Sites 9.0 GW 1,434 Sites Primary Metals 3.9 GW Multi-Family 430 Sites Food Processing 4.7 GW Wastewater Refining 15.3 GW Treatment Hospitals 238 Sites Schools (K-12) Colleges/Univ. Pulp & Paper 229 Sites 285 Sites 10.7 GW 281 Sites

Source: DOE CHP Installation Database (U.S. installations as of December 31, 2019)

By Capacity – 80.7 GW

CHP and Microgrids

A microgrid is a **group of interconnected loads and distributed energy resources** within clearly defined electrical boundaries that acts as a **single controllable entity** with respect to the grid.

A microgrid can **connect and disconnect** from the larger utility grid to enable it to operate in both **grid-connected** or **island-mode**.

Source: U.S. Department of Energy Microgrid Exchange Group

- With a CHP system providing reliable baseload electric and thermal energy, microgrids can add renewables and storage
- Increased focus on resilience for critical infrastructure
 - Universities, Hospitals, Military bases, Communities

CHP Increases Resilience

For Industrial Applications:

- Provides continuous supply of electricity and thermal energy for critical loads
- Can be configured to automatically switch to "island mode" during a utility outage, and to "black start" without grid power
- Ability to withstand long, multiday outages

Growth of Hybrid DER Systems

- Hybrid DER approaches offer the opportunity for technologies to complement one another
- Hybrid systems combine characteristics of individual technologies
 - CHP provides baseload energy
 - Solar variable renewable generation can now be "firmed"
 - Storage adding flexibility
- Allows CHP to be a key part of the move toward a distributed/renewable grid

DOE TAP CHP Screening Analysis

- High level assessment to determine if site shows potential for a CHP project
 - -Quantitative Analysis
 - Energy Consumption & Costs
 - Estimated Energy Savings & Payback
 - CHP System Sizing

-Qualitative Analysis

- Understanding project drivers
- Understanding site peculiarities

Annual Energy Consumption		
	Base Case	CHP Case
Purchased Electricty, kWh	88,250,160	5,534,150
Generated Electricity, kWh	0	82,716,010
On-site Thermal, MMBtu	426,000	18,872
CHP Thermal, MMBtu	0	407,128
Boiler Fuel, MMBtu	532,500	23,590
CHP Fuel, MMBtu	0	969,845
Total Fuel, MMBtu	532,500	993,435
Annual Operating Costs		
Purchased Electricity, \$	\$7,060,013	\$1,104,460
Standby Power, \$	\$0	\$0
On-site Thermal Fuel, \$	\$3,195,000	\$141,539
CHP Fuel, \$	\$0	\$5,819,071
Incremental O&M, \$	<u>\$0</u>	\$744,444
Total Operating Costs, \$	\$10,255,013	\$7,809,514
Simple Payback		
Annual Operating Savings, \$		\$2,445,499
Total Installed Costs, \$/kW		\$1,400
Total Installed Costs, \$/k		\$12,990,000
Simple Payback, Years		5.3
Operating Costs to Generate		
Fuel Costs, \$/kWh		\$0.070
Thermal Credit, \$/kWh		(\$0.037)
Incremental O&M, \$/kWh		\$0.009
Total Operating Costs to Generate, \$/kWh	35	\$0.042

